Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2005
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2005
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2005
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2005
  • View Item
2005-01-10Buch DOI: 10.18452/8330
Simple Integer Recourse Models
Convexity and Convex Approximations
Haneveld, Willem K. Klein
Stougie, Leen
Vlerk, Maarten H. van der
We consider the objective function of a simple recourse problem with fixed technology matrix and integer second-stage variables. Separability due to the simple recourse structure allows to study a one-dimensional version instead.Based on an explicit formula for the objective function, we derive a complete description of the class of probability density functions such that the objective function is convex. This result is also stated in terms of random variables.Next, we present a class of convex approximations of the function, which are obtained by perturbing the distributions of the right-hand side parameters. We derive a uniform bound on the absolute error of the approximation. Finally, we give a representation of convex simple integer recourse problems as continuous simple recourse problems, so that they can be solved by existing special purpose algorithms.
Files in this item
Thumbnail
1.pdf — Adobe PDF — 228.4 Kb
MD5: ab174b315686bd615c6a58f0936c463e
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8330
Permanent URL
https://doi.org/10.18452/8330
HTML
<a href="https://doi.org/10.18452/8330">https://doi.org/10.18452/8330</a>