Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2005
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2005
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2005
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2005
  • View Item
2005-01-10Buch DOI: 10.18452/8331
A Branch-Reduce-Cut Algorithm for the Global Optimization of Probabilistically Constrained Linear Programs
Cheon, Myun-Seok
Ahmed, Shabbir
Al-Khayyal, Faiz
We consider probabilistic constrained linear programs with general distributions for the uncertain parameters. These problems generally involve non-convex feasible sets. We develop a branch and bound algorithm that searches for a global solution to this problem by successively partitioning the non-convex feasible region and by using bounds on the objective function to fathom inferior partitions. This basic algorithm is enhanced by domain reduction and cutting plane strategies to reduce the size of the partitions and hence tighten bounds. The proposed branch-reduce-cut algorithm exploits the monotonicity properties inherent in the problem, and requires solving linear programming subproblems. We provide convergence proofs for the algorithm. Some illustrative numerical results involving problems with discrete distributions are presented.
Files in this item
Thumbnail
2.pdf — Adobe PDF — 271.9 Kb
MD5: 5c9038a6c5d46b3f4d66eba7aebd0ce3
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8331
Permanent URL
https://doi.org/10.18452/8331
HTML
<a href="https://doi.org/10.18452/8331">https://doi.org/10.18452/8331</a>