Show simple item record

2005-12-28Buch DOI: 10.18452/8347
Aggregation and Discretization in Multistage Stochastic Programming
dc.contributor.authorKuhn, Daniel
dc.contributor.editorHigle, Julie L.
dc.contributor.editorRömisch, Werner
dc.contributor.editorSen, Surrajeet
dc.date.accessioned2017-06-16T20:05:54Z
dc.date.available2017-06-16T20:05:54Z
dc.date.created2006-03-08
dc.date.issued2005-12-28
dc.date.submitted2005-06-30
dc.identifier.urihttp://edoc.hu-berlin.de/18452/8999
dc.description.abstractMultistage stochastic programs have applications in many areas and support policy makers in finding rational decisions that hedge against unforeseen neg- ative events. In order to ensure computational tractability, continuous-state stochastic programs are usually discretized; and frequently, the curse of dimensionality dictates that decision stages must be aggregated. In this article we construct two discrete, stage-aggregated stochastic programs which provide upper and lower bounds on the optimal value of the original problem. The approximate problems involve finitely many decisions and constraints, thus principally allowing for numerical solution.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectaggregationeng
dc.subjectstochastic programmingeng
dc.subjectapproximationeng
dc.subjectdiscretizationeng
dc.subjectboundseng
dc.subject.ddc510 Mathematik
dc.titleAggregation and Discretization in Multistage Stochastic Programming
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10059940
dc.identifier.doihttp://dx.doi.org/10.18452/8347
local.edoc.pages43
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
dc.identifier.zdb2936317-2
bua.series.nameStochastic Programming E-Print Series
bua.series.issuenumber2005,18

Show simple item record