Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
2006-10-26Buch DOI: 10.18452/8362
Scenario reduction in stochastic programming with respect to discrepancy distances
Henrion, René
Küchler, Christian
Römisch, Werner
Discrete approximations to chance constrained and mixed-integer two-stage stochastic programs require moderately sized scenario sets. The relevant distances of (multivariate) probability distributions for deriving quantitative stability results for such stochastic programs are B-discrepancies, where the class B of Borel sets depends on their structural properties. Hence, the optimal scenario reduction problem for such models is stated with respect to B-discrepancies. In this paper, upper and lower bounds, and some explicit solutions for optimal scenario reduction problems are derived. In addition, we develop heuristic algorithms for determining nearly optimally reduced probability measures, discuss the case of the cell discrepancy (or Kolmogorov metric) in some detail and provide some numerical experience.
Files in this item
Thumbnail
13.pdf — Adobe PDF — 440.0 Kb
MD5: 8223a3d1e74253c161b26968d719e0a8
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8362
Permanent URL
https://doi.org/10.18452/8362
HTML
<a href="https://doi.org/10.18452/8362">https://doi.org/10.18452/8362</a>