Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
2006-10-27Buch DOI: 10.18452/8363
Robust solution and risk measures for a supply chain planning problem under uncertainty
Poojari, Chandra A.
Lucas, Cormac
Mitra, Gautam
We consider a strategic supply chain planning problem formulated as a two-stageStochastic Integer Programming (SIP) model. The strategic decisions include sitelocations, choices of production, packing and distribution lines, and the capacityincrement or decrement policies. The SIP model provides a practical representationof real world discrete resource allocation problems in the presence of future uncertaintieswhich arise due to changes in the business and economic environment. Suchmodels that consider the future scenarios (along with their respective probabilities)not only identify optimal plans for each scenario, but also determine a hedgedstrategy for all the scenarios. We,(1) exploit the natural decomposable structure of the SIP problem through Benders’decomposition,(2) approximate the probability distribution of the random variables using theGeneralised Lambda distribution, and(3) through simulations, calculate the performance statistics and the risk measuresfor the two models, namely the expected-value and the here-and-now.Key words: Supply Chain planning, Stochastic integer Programming, Benders’decomposition, Generalised Lambda distribution, simulation, Genetic algorithm
Files in this item
Thumbnail
14.pdf — Adobe PDF — 240.2 Kb
MD5: e4ce272047e1988a633776ca0960fdb3
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8363
Permanent URL
https://doi.org/10.18452/8363
HTML
<a href="https://doi.org/10.18452/8363">https://doi.org/10.18452/8363</a>