Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2006
  • View Item
2006-12-18Buch DOI: 10.18452/8371
Convergent Bounds for Stochastic Programs with Expected Value Constraints
Kuhn, Daniel
This article elaborates a bounding approximation scheme for convexmultistage stochastic programs (MSP) that constrain the conditional expectation ofsome decision-dependent random variables. Expected value constraints of this typeare useful for modelling a decision maker’s risk preferences, but they may also ariseas artefacts of stage-aggregation. It is shown that the gap between certain upper andlower bounds on the optimal objective value can be made smaller than any prescribedtolerance. Moreover, the solutions of some tractable approximate MSP give rise to apolicy which is feasible in the (untractable) original MSP, and this policy’s cost differsfrom the optimal cost at most by the difference between the bounds. The consideredproblem class comprises models with integrated chance constraints and conditionalvalue-at-risk constraints. No relatively complete recourse is assumed.
Files in this item
Thumbnail
22.pdf — Adobe PDF — 247.2 Kb
MD5: 8946db7c5f28883b1da9eb0440160d32
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8371
Permanent URL
https://doi.org/10.18452/8371
HTML
<a href="https://doi.org/10.18452/8371">https://doi.org/10.18452/8371</a>