Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2008
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2008
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2008
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2008
  • View Item
2008-02-22Buch DOI: 10.18452/8385
Disjunctive decomposition for two-stage stochastic mixed-binary programs with random recourse
Ntaimo, Lewis
This paper introduces disjunctive decomposition for two-stage mixed 0-1 stochastic integer programs (SIPs) with random recourse. Disjunctive decomposition allows for cutting planes based on disjunctive programming to be generated for each scenario subproblem under a temporal decomposition setting of the SIP problem.A new class of valid inequalities for mixed 0-1 SIP with random recourse is presented. In particular, valid inequalities that allow for sharing cut coefficients among scenario subproblems for SIP with random recourse but deterministic technology matrix and righthand side vector are obtained. The valid inequalities are used to derive a disjunctive decomposition method whose derivation has been motivatedby real-life stochastic server location problems with random recourse, which find many applications in operations research. Computational results with large-scaleinstances to demonstrate the potential of the method are reported.
Files in this item
Thumbnail
1.pdf — Adobe PDF — 237.0 Kb
MD5: 2c895f800b8d37bf5eaa166835ae4a58
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8385
Permanent URL
https://doi.org/10.18452/8385
HTML
<a href="https://doi.org/10.18452/8385">https://doi.org/10.18452/8385</a>