Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2010
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2010
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2010
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2010
  • View Item
2010-05-25Buch DOI: 10.18452/8410
Stability and sensitivity analysis of stochastic programs with second order dominance constraints
Liu, Yongchao
Xu, Huifu
In this paper we present stability and sensitivity analysis of a stochastic optimizationproblem with stochastic second order dominance constraints. We consider perturbation of theunderlying probability measure in the space of regular measures equipped with pseudometricdiscrepancy distance ( [30]). By exploiting a result on error bound in semi-infinite programmingdue to Gugat [13], we show under the Slater constraint qualification that the optimal valuefunction is Lipschitz continuous and the optimal solution set mapping is upper semicontinuouswith respect to the perturbation of the probability measure. In particular, we consider the case when the probability measure is approximated by empirical probability measure and show the exponential rate of convergence of optimal solution obtained from solving the approximation problem. The analysis is extended to the stationary points when the objective function is nonconvex.
Files in this item
Thumbnail
3.pdf — Adobe PDF — 239.4 Kb
MD5: 9e8147e61c7d06029257204ac96aed77
Notes
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8410
Permanent URL
https://doi.org/10.18452/8410
HTML
<a href="https://doi.org/10.18452/8410">https://doi.org/10.18452/8410</a>