Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2010
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2010
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2010
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2010
  • View Item
2010-11-19Buch DOI: 10.18452/8415
Construction of Risk-Averse Enhanced Index Funds
Lejeune, Miguel
Samatli-Pac, Gülay
We propose a partial replication strategy to construct risk-averse enhanced index funds. Our model takes into account the parameter estimation risk by defining the asset returns and the return covariance terms as random variables. The variance of the index fund return is forced to be below a low-risk threshold with a largeprobability, thereby limiting the market risk exposure of the investors and the moral hazard associated with thewage structure of fund managers. The resulting stochastic integer problem is reformulated through the derivationof a deterministic equivalent for the risk constraint and the use of a block decomposition technique. We developan exact outer approximation method based on the relaxation of some binary restrictions and the reformulation ofthe cardinality constraint. The method provides a hierarchical organization of the computations with expandingsets of integer-restricted variables and outperforms the Bonmin and the Cplex 12.1 solvers. The methodcan solve very large (up to 1000 securities) instances, converges fast, scales well, and is general enough to beapplicable to problems with buy-in threshold constraints. Cross-validation tests show that the constructed fundstrack closely and are consistently less risky than the benchmark on the out-of-sample period.
Files in this item
Thumbnail
8.pdf — Adobe PDF — 730.6 Kb
MD5: 9ea440869b8a726b759b9592a2c64d98
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8415
Permanent URL
https://doi.org/10.18452/8415
HTML
<a href="https://doi.org/10.18452/8415">https://doi.org/10.18452/8415</a>