Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2011
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2011
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2011
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2011
  • View Item
2011-09-13Buch DOI: 10.18452/8418
A gradient formula for linear chance constraints under Gaussian distribution
Henrion, René
Möller, Andris
We provide an explicit gradient formula for linear chance constraints under a (possibly singular) multivariate Gaussian distribution. This formula allows one to reduce the calculus of gradients to the calculus of values of the same type of chance constraints (in smaller dimension and with different distribution parameters). This is an important aspect for the numerical solution of stochastic optimization problems because existing efficient codes for e.g., calculating singular Gaussian distributions or regular Gaussian probabilities of polyhedra can be employed to calculate gradients at thesame time. Moreover, the precision of gradients can be controlled by that of function values, which is a great advantage over using finite difference approximations. Finally, higher order derivatives are easily derived explicitly. The use of the obtained formula is illustrated for an example of a stochastic transportation network.
Files in this item
Thumbnail
2.pdf — Adobe PDF — 378.6 Kb
MD5: ac3c155be6c085c020196c2561a2c4d5
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8418
Permanent URL
https://doi.org/10.18452/8418
HTML
<a href="https://doi.org/10.18452/8418">https://doi.org/10.18452/8418</a>