Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2012
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2012
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2012
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2012
  • View Item
2012-09-24Buch DOI: 10.18452/8425
Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
Heitsch, Holger
Leövey, Hernan
Römisch, Werner
Quasi-Monte Carlo algorithms are studied for designing discrete approximationsof two-stage linear stochastic programs. Their integrands are piecewiselinear, but neither smooth nor lie in the function spaces considered for QMC erroranalysis. We show that under some weak geometric condition on the two-stagemodel all terms of their ANOVA decomposition, except the one of highest order,are smooth. Hence, Quasi-Monte Carlo algorithms may achieve the optimal rateof convergence $O(n^{-1+\delta}$ with $\delta \in (0,\frac{1}{2}]$ and a constant not depending on the dimension. The geometric condition is shown to be generically satisfied if the underlyingdistribution is normal. We discuss sensitivity indices, effective dimensionsand dimension reduction techniques for two-stage integrands. Numerical experimentsshow that indeed convergence rates close to the optimal rate are achievedwhen using randomly scrambled Sobol' point sets and randomly shifted latticerules accompanied with suitable dimension reduction techniques.
Files in this item
Thumbnail
5.pdf — Adobe PDF — 462.3 Kb
MD5: 31f0eae2d36a3a75dfce48e9a5002bfb
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8425
Permanent URL
https://doi.org/10.18452/8425
HTML
<a href="https://doi.org/10.18452/8425">https://doi.org/10.18452/8425</a>