Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2012
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2012
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2012
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2012
  • View Item
2012-11-23Buch DOI: 10.18452/8429
Threshold Boolean Form for Joint Probabilistic Constraints with Random Technology Matrix
Kogan, Alexander
Lejeune, Miguel A.
We develop a new modeling and exact solution method for stochastic programming problems thatinclude a joint probabilistic constraint in which the multi-row random technology matrix is discretely distributed. We binarize the probability distribution of the random variables in such a way that we can extract a threshold partially defined Boolean function (pdBf) representing the probabilistic constraint.We then construct a tight threshold Boolean minorant for the pdBf. Any separating structureof the tight threshold Boolean minorant defines sufficient conditions for the satisfaction of the probabilistic constraint and takes the form of a system of linear constraints. We use the separating structure to derive three new deterministic formulations equivalent to the studied stochastic problem. We derivea set of strengthening valid inequalities for the reformulated problems. A crucial feature ofthe new integer formulations is that the number of integer variables does not depend on the numberof scenarios used to represent uncertainty. The computational study, based on instances of thestochastic capital rationing problem, shows that the MIP reformulations are much easier and ordersof magnitude faster to solve than the MINLP formulation. The method integrating the derived valid inequalities in a branch-and-bound algorithm has the best performance.
Files in this item
Thumbnail
9.pdf — Adobe PDF — 259.6 Kb
MD5: 266c1f1f06aa9803eaf18207ae05a714
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8429
Permanent URL
https://doi.org/10.18452/8429
HTML
<a href="https://doi.org/10.18452/8429">https://doi.org/10.18452/8429</a>