Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2013
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2013
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2013
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2013
  • View Item
2013-04-09Buch DOI: 10.18452/8433
Computational aspects of risk-averse optimizationin two-stage stochastic models
Fábián, Csaba I.
Computational studies on two-stage stochastic programming problems indicate that aggregate models have better scale-up properties than disaggregate ones, though the threshold of breaking even may be high. In this paper we attempt to explain this phenomenon, and to lower this threshold.We present the on-demand accuracy approach of Oliveira and Sagastizábal in a form which shows that this approach, when applied to two-stage stochastic programming problems, combines the advantages of the disaggregate and the aggregate models.Moreover, we generalize the on-demand accuracy approach to constrained convex problems, and showhow to apply it to risk-averse two-stage stochastic programming problems.
Files in this item
Thumbnail
3.pdf — Adobe PDF — 267.9 Kb
MD5: 56b0e1c3d04d632075d67c8d0e3997ba
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8433
Permanent URL
https://doi.org/10.18452/8433
HTML
<a href="https://doi.org/10.18452/8433">https://doi.org/10.18452/8433</a>