Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2014
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2014
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2014
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2014
  • View Item
2014-04-04Buch DOI: 10.18452/8439
Multi-Objective Probabilistically Constrained Programming with Variable Risk: New Models and Applications
Lejeune, Miguel A.
Shen, Siqian
We consider a class of multi-objective probabilistically constrained problems MOPCP with a joint chance constraint, a multi-row random technology matrix, and a risk parameter (i.e., the reliability level) defined as a decision variable. We propose a Boolean modeling framework and derive a series of new equivalent mixed-integer programming formulations. We demonstrate the computational efficiency of the formulations that contain a small number of binary variables. We provide modeling insights pertaining to the most suitable reformulation, to the trade-off between the conflicting cost/revenue and reliability objectives, and to the scalarization parameter determining the relative importance of the objectives. Finally, we propose several MOPCP variants of multi-portfolio financial optimization models that implement a downside risk measure and can be used in a centralized or decentralized investment context. We study the impact of the model parameters on the portfolios, show, via a cross-validation study, the robustness of the proposed models, and perform a comparative analysis of the optimal investment decisions.
Files in this item
Thumbnail
1.pdf — Adobe PDF — 376.9 Kb
MD5: 6c92c85564aad547cc06587fe92f2983
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8439
Permanent URL
https://doi.org/10.18452/8439
HTML
<a href="https://doi.org/10.18452/8439">https://doi.org/10.18452/8439</a>