Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2014
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2014
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2014
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2014
  • View Item
2014-04-16Buch DOI: 10.18452/8440
Mitigating Uncertainty via Compromise Decisions in Two-stage Stochastic Linear Programming
Sen, Suvrajeet
Liu, Yifan
Stochastic Programming (SP) has long been considered as a well-justified yet computationally challenging paradigm for practical applications. Computational studies in the literature often involve approximating a large number of scenarios by using a small number of scenarios to be processed via deterministic solvers, or running Sample Average Approximation on some genre of high performance machines so that statistically acceptable bounds can be obtained. In this paper we show that for a class of stochastic linear programming problems, an alternative approach known as Stochastic Decomposition (SD) can provide solutions of similar quality, in far less computational time using ordinary desktop or laptop machines of today. In addition to these compelling computational results, we also provide a stronger convergence result for SD, and introduce a new solution concept which we refer to as the compromise decision. This new concept is attractive for algorithms which call for multiple replications in sampling-based convex optimization algorithms. For such replicated optimization, we show that the difference between an average solution and a compromise decision provides a natural stopping rule. Finally our computational results cover a variety of instances from the literature, including a detailed study of SSN, a network planning instance which is known to be more challenging than other test instances in the literature.
Files in this item
Thumbnail
2.pdf — Adobe PDF — 810.4 Kb
MD5: 7882350dbabf5a993e3c447870bbabb3
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8440
Permanent URL
https://doi.org/10.18452/8440
HTML
<a href="https://doi.org/10.18452/8440">https://doi.org/10.18452/8440</a>