Show simple item record

2017-02-21Buch DOI: 10.18452/8453
Scenariao Reduction Revisited: Fundamental Limits and Gurarantees
dc.contributor.authorRujeerapaiboon, Napat
dc.contributor.authorSchindler, Kilian
dc.contributor.authorKuhn, Daniel
dc.contributor.authorWiesemann, Wolfram
dc.contributor.editorHigle, Julie L.
dc.contributor.editorRömisch, Werner
dc.contributor.editorSen, Surrajeet
dc.date.accessioned2017-06-16T20:35:51Z
dc.date.available2017-06-16T20:35:51Z
dc.date.created2017-02-24
dc.date.issued2017-02-21
dc.date.submitted2017-02-04
dc.identifier.urihttp://edoc.hu-berlin.de/18452/9105
dc.description.abstractThe goal of scenario reduction is to approximate a given discrete distributionwith another discrete distribution that has fewer atoms. We distinguishcontinuous scenario reduction, where the new atoms may be chosen freely, anddiscrete scenario reduction, where the new atoms must be chosen from among theexisting ones. Using the Wasserstein distance as measure of proximity between distributions,we identify those n-point distributions on the unit ball that are leastsusceptible to scenario reduction, i.e., that have maximum Wasserstein distanceto their closest m-point distributions for some prescribed m < n. We also providesharp bounds on the added benefit of continuous over discrete scenario reduction.Finally, to our best knowledge, we propose the first polynomial-time constant-factorapproximations for both discrete and continuous scenario reduction as wellas the first exact exponential-time algorithms for continuous scenario reduction.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectscenario reductioneng
dc.subjectWasserstein distanceeng
dc.subjectconstant-factor approximation algorithmeng
dc.subjectk-median clusteringeng
dc.subjectk-means clusteringeng
dc.subject.ddc510 Mathematik
dc.titleScenariao Reduction Revisited: Fundamental Limits and Gurarantees
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-100244408
dc.identifier.doihttp://dx.doi.org/10.18452/8453
local.edoc.pages30
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
dc.identifier.zdb2936317-2
bua.series.nameStochastic Programming E-Print Series
bua.series.issuenumber2017,1

Show simple item record