Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2017
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2017
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2017
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2017
  • View Item
2017-04-19Buch DOI: 10.18452/8454
Optimal scenario generation and reduction in stochastic programming
Henrion, René
Römisch, Werner
Scenarios are indispensable ingredients for the numerical solution of stochastic optimization problems. Earlier approaches for optimal scenario generation and reduction are based on stability arguments involving distances of probabilitymeasures. In this paper we review those ideas and suggest to make use of stability estimates based on distances containing minimal information, i.e., on data appearing in the optimization model only. For linear two-stage stochasticprograms we show that the optimal scenario generation problem can be reformulatedas best approximation problem for the expected recourse function and asgeneralized semi-infinite program, respectively. The latter model turns out to beconvex if either right-hand sides or costs are random. We also review the problemsof optimal scenario reduction for two-stage models and of optimal scenario generationfor chance constrained programs. Finally, we consider scenario generationand reduction for the classical newsvendor problem.
Files in this item
Thumbnail
2.pdf — Adobe PDF — 336.6 Kb
MD5: ca9fb0d9d553f61d5c7e24a1797fc9ff
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8454
Permanent URL
https://doi.org/10.18452/8454
HTML
<a href="https://doi.org/10.18452/8454">https://doi.org/10.18452/8454</a>