Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2005-03-01Konferenzveröffentlichung DOI: 10.18452/9200
Self-Extending Peer Data Management
Heese, Ralf
Herschel, Sven
Naumann, Felix
Roth, Armin
Mathematisch-Naturwissenschaftliche Fakultät II
Peer data management systems (PDMS) are the natural extension of integrated information systems. Conventionally, a single integrating system manages an integrated schema, distributes queries to appropriate sources, and integrates incoming data to a common result. In contrast, a PDMS consists of a set of peers, each of which can play the role of an integrating component. A peer knows about its neighboring peers by mappings, which help to translate queries and transform data. Queries submitted to one peer are answered by data residing at that peer and by data that is reached along paths of mappings through the network of peers. The only restriction for PDMS to cover unbounded data is the need to formulate at least one mapping from some known peer to a new data source. We propose a Semantic Web based method that overcomes this restriction, albeit at a price. As sources are dynamically and automatically included in a PDMS, three factors diminish quality: The new source itself might store data of poor quality, the mapping to the PDMS might be incorrect, and the mapping to the PDMS might be incomplete. To compensate, we propose a quality model to measure this effect, a cost model to restrict query planning to the best paths through the PDMS, and techniques to answer queries in such Webscale PDMS efficiently.
Files in this item
Thumbnail
22OioY4aXHK6.pdf — Adobe PDF — 147.4 Kb
MD5: c2c76bc143926e0af32d0fb489ddbedd
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/9200
Permanent URL
https://doi.org/10.18452/9200
HTML
<a href="https://doi.org/10.18452/9200">https://doi.org/10.18452/9200</a>