On the Appropriateness of Inappropriate VaR Models
Files
Department
Loading...
Abstract
Die Berechnung des VaR führt zur Reduktion der Dimension des Raumes der Risikofaktoren. Die vorzunehmenden Vereinfachungen resultieren aus unterschiedlichen Beweggründen, z.B. technische Effizienz, Sachlogik der Ergebnisse und statistische Adäquanz des Modells. Im Kapitel 2 stellen wir drei gängige Mappingverfahren vor: das Marktindexmodell, das Hauptkomponentenmodell und das Modell mit gleichkorrelierten Risikofaktoren. Impulse für Methoden zum Vergleich dieser Modelle im Kapitel 3 kamen vor allem aus der Literatur zur Praxis der Beurteilung von Wetterprognosen (Murphy and Winkler 1992, Murphy 1997). Umfangreiche Überlegungen zu einer quantitativen Analyse werden im vierten Kapitel dieser Arbeit vorgestellt. Die empirische Analyse der DAX Daten wird abschließend mit XploRe durchgeführt.
The Value-at-Risk calculation reduces the dimensionality of the risk factor space. The main reasons for such simplifications are, e.g., technical efficiency, the logic and statistical appropriateness of the model. In Chapter 2 we present three simple mappings: the mapping on the market index, the principal components model and the model with equally correlated risk factors. The comparison of these models in Chapter 3 is based on the literatere on the verification of weather forecasts (Murphy and Winkler 1992, Murphy 1997). Some considerations on the quantitative analysis are presented in the fourth chapter. In the last chapter, we present empirical analysis of the DAX data using XploRe.
The Value-at-Risk calculation reduces the dimensionality of the risk factor space. The main reasons for such simplifications are, e.g., technical efficiency, the logic and statistical appropriateness of the model. In Chapter 2 we present three simple mappings: the mapping on the market index, the principal components model and the model with equally correlated risk factors. The comparison of these models in Chapter 3 is based on the literatere on the verification of weather forecasts (Murphy and Winkler 1992, Murphy 1997). Some considerations on the quantitative analysis are presented in the fourth chapter. In the last chapter, we present empirical analysis of the DAX data using XploRe.
Description
Keywords
Value-at-Risk, market index model, principal components, random effects model, probability forecast
Dewey Decimal Classification
Citation
Härdle, Wolfgang Karl, Hlávka, Zdeněk, Stahl, Gerhard.(2006). On the Appropriateness of Inappropriate VaR Models. Sonderforschungsbereich 649: Ökonomisches Risiko. , 2006,3. 10.18452/3930