Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2007-01-01Zeitschriftenartikel DOI: 10.18452/9474
Linear and Quasi-Linear Iterative Splitting Methods
Theory and Applications
Geiser, Jürgen
Mathematisch-Naturwissenschaftliche Fakultät II
In this paper we consider time-decomposition methods and present interesting model problems as benchmark problems in order to study the numerical analysis of the proposed methods. For the time-decomposition methods we discuss the iterative operator-splitting methods with re- spect to the stability and consistency. The main idea for deriving the error estimates is the Taylor expansion in time of the linearized opera- tors. The stability analysis is based on the A-stability of ordinary differ- ential equations, and the importance of including weighted parameters for relaxing the iterative operator-splitting methods can be seen. The exactness and the effciency of the methods are investigated through so- lutions of nonlinear model problems of parabolic differential equations, for example systems of convection-reaction-discussion equations. Finally we discuss the future works and the usefulness of this study in real-life applications. Mathematics Subject
Files in this item
Thumbnail
25QC778HA27E.pdf — Adobe PDF — 177.7 Kb
MD5: da5aafd76c2d2468b38076f4754c3128
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/9474
Permanent URL
https://doi.org/10.18452/9474
HTML
<a href="https://doi.org/10.18452/9474">https://doi.org/10.18452/9474</a>